Solutions
Math 220
HW # 5
October 29, 2018

Exercise 1.

- (a) Is 52 divisible by 13?
- (b) Does 5|0?
- (c) Is (3k+1)(3k+2)(3k+3) divisible by 3?
- (d) Is 29 a multiple of 3?
- (e) Is -3 a factor of 66?
- (f) If n = 4k + 1, does 8 divide $n^2 1$? Solution.

- (a) Yes, $52 = 13 \cdot 4$.
- (b) Yes, zero is divisible by any nonzero number.
- (c) Yes, because (3k+3) is divisible by 3.
- (d) No, 29 is not a multiple of 3.
- (e) Yes, -3 is a factor of 66 since it divides it.
- (f) $n^2 1 = 16k^2 + 8k + 1 1 = 16k^2 + 8k$, so yes, $8 | (n^2 1)$.

Exercise 2. Let a and b be integers, with $a \neq 0$. Prove that if a|b, then $a^2|b^2$.

Proof. Suppose a|b, then b=ac for some $c \in \mathbb{Z}$. Then $b^2=(ac)^2=a^2c^2$ which shows $a^2|b^2$.

Exercise 3. Let $a \in \mathbb{Z}$. Prove that if 3|2a, then 3|a.

Proof. Suppose that $3 \nmid a$. Then a = 3k + 1 or a = 3k + 2 for some $k \in \mathbb{Z}$.

Case 1 Assume a = 3k + 1.

$$2a = 2(3k + 1) = 6k + 2 = 3(2k) + 2$$

which shows that 2a is not divisible by 3.

Case 2 Assume a = 3k + 2.

$$2a = 2(3k + 2) = 6k + 4 = 3(2k + 1) + 1$$

which again shows that 2a is not divisible by 3.

Therefore $3 \nmid 2a$. So by contraposition, we have that if $3 \mid 2a$, then $3 \mid a$.

Exercise 4. Let $x \in \mathbb{Z}$. Prove that if $2|(x^2-5)$, then $4|(x^2-5)$.

Proof. Assume that $4 \nmid (x^2 - 5)$. Then there are 3 cases:

Case 1: Assume $x^2 - 5 = 4k + 1$. Since $2 \mid 4k$ and $2 \nmid 1$, we have $2 \nmid (4k + 1)$, hence $2 \nmid (x^2 - 5)$.

<u>Case 2:</u> Assume $x^2 - 5 = 4k + 3$. Since $2 \mid 4k$ and $2 \nmid 3$, we have $2 \nmid (4k + 3)$, hence $2 \nmid (x^2 - 5)$.

Case 3: Assume $x^2 - 5 = 4k + 2$, then $x^2 = 4k + 7 = 4(k+1) + 3$. This means that x^2 , and hence x, is odd. Let x = 2y + 1, then $x^2 = 4k + 3$ becomes

$$4y^2 + 4y + 1 = 4k + 3 \Leftrightarrow 4y^2 + 4y = 4k + 2 \Leftrightarrow 2y^2 + 2y = 2k + 2.$$

So the left side is even while the right side is odd, a contradiction. Hence we cannot have $x^2 - 5 = 4k + 1$.

By contrapositive, we have that if $2|(x^2-5)$, then $4|(x^2-5)$.

Exercise 5. Let $a, b, c \in \mathbb{Z}$ and assume $a^2 + b^2 = c^2$. Then 3|ab.

Hint: Use proof by contradiction. You will need some results from class to do this as well.

Proof. Assume that $a^2 + b^2 = c^2$ and $3 \nmid ab$. Then $3 \nmid a$ and $3 \nmid b$. Then $a^2 = 3k + 1$ and $b^2 = 3l + 1$ for some $k, l \in \mathbb{Z}$. Then

$$c^2 = (3k+1) + (3l+1) = 3(k+l) + 2.$$

This means that c^2 has a remainder of 2 when divided by 3, which is a contradition. Therefore 3|ab.

Exercise 6. Let $a, b, n \in \mathbb{Z}$ with $n \geq 2$. Prove that if $a \equiv b \mod n$, then $a^2 \equiv b^2 \mod n$.

Proof. Assume that $a \equiv b \mod n$. Then n|(a-b). Observe that $a^2 - b^2 = (a+b)(a-b)$, hence we have that $n|(a^2 - b^2)$, so $a^2 \equiv b^2 \mod n$.

Exercise 7. Let $a, b, c, n \in \mathbb{Z}$ with $n \geq 2$. Prove that if $a \equiv b \mod n$ and $a \equiv c \mod n$, then $b \equiv c \mod n$.

Proof. Assume $a \equiv b \mod n$ and $a \equiv c \mod n$, then a - b = nk and a - c = nl for some $k, l \in \mathbb{Z}$. Subtract the first equation from the second to get

$$(a-c) - (a-b) = nl - nk$$
$$b-c = n(l-k)$$

Which shows that $b \equiv c \mod n$.

Exercise 8. Let $m, n \in \mathbb{N}$ such that m|n. Prove that if a and b are integers such that $a \equiv b \mod n$, then $a \equiv b \mod m$.

Proof. If $a \equiv b \mod n$, then n|(a-b). Since m|n, by the transitive property of divides, we have that m|(a-b). Therefore $a \equiv b \mod m$.

Exercise 9. Let $a \in \mathbb{Z}$. Prove that $a^3 \equiv a \mod 3$.

Proof. We do this in three cases.

- Case 1: Assume a = 3k, then $a^3 a = 27k^3 3k = 3(9k^3 k)$, so $a^3 \equiv a \mod n$.
- <u>Case 2:</u> Assume a = 3k+1, then $a^3 a = (3k+1)^3 (3k+1) = 27k^3 + 27k^2 + 9k + 1 3k 1 = 27k^3 + 27k^2 + 6k = 3(9k^3 + 9k^2 + 2k)$, so $a^3 \equiv a \mod n$.
- <u>Case 3:</u> Assume a = 3k+2, then $a^3 a = (3k+2)^3 (3k+2) = 27k^3 + 54k^2 + 36k + 8 3k 2 = 27k^3 + 54k^2 + 33k + 6 = 3(9k^3 + 9k^2 + 2k)$, so $a^3 \equiv a \mod n$.

Exercise 10. The product of any three consecutive integers is divisible by 6.

Proof. This product can be written in the form n(n+1)(n+2) for some $n \in \mathbb{Z}$. If n is even, then 2|n, hence 2 divides the product. If n is odd, then n+1 is even, so 2|(n+1), hence 2 divides the product. So, no matter what, 2|n(n+1)(n+2). If 3|n, then 3 divides the product. If $3 \nmid n$, then there are two possibilities. If n = 3k + 1, then n + 2 = (3k + 1) + 2 = 3k + 3 is divisible by 3. If n = 3k + 2, then n + 1 = 3k + 3, which is divisible by 3. Hence the product is always divisible by 3. Since the product is divisible by 2 and 3, it is divisible by $2 \cdot 3 = 6$.